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Topics Preview

1 Application I: Boolean optimization

2 Application II: Linear Stochastic Bandits
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In this section, we introduce the work by Makarychev and Sviridenko
(2018, [3]), where the authors developed a tight decoupling inequality and
used it to obtain the performance guarantee of approximation algorithms
to minimize the cost of resources needed for a certain task.
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Consider the following class of Boolean nonlinear programs:

min
x∈{0,1}n

∑
j

fj
(∑

dijxi
)

, s.t. y ∈ P (1)

where
x = (x1, · · · , xn) ∈ {0, 1}n consists of boolean variables to be
optimized upon
P is a polytope constraint of x, i.e. a finite set of linear inequality
constraints aT

i x ≤ bi

dij ≥ 0 are known parameters of the system
fj is a non-decreasing convex cost function.
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Let’s start with a classical load balancing problem. Consider n jobs and m
machines (m < n), and we need to decide which job each machine takes.
Let xij denote whether job i is assigned to machine j , 1 being yes and 0
otherwise. Naturally we need each problem assigned only once, i.e.

m∑
j=1

xij = 1, ∀i = 1, 2, ..., n.

If job i is assigned to machine j , the processing time is known to be
dij ≥ 0. The ’cost’ of machine j is a polynomial of its total processing
time: (

∑
i dijxij)q for some q > 1 and we want to minimize the total cost.

The problem can be formally written as

min
x

m∑
j=1

( n∑
i=1

dijxij

)q

, s.t.
m∑

j=1
xij = 1, ∀i . (2)
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To match the form of (1), we can rewrite the inner sum to iterate on
double subscript (i , k) and define di ,j,k = dij if k = j and di ,j,k = 0
otherwise. Problem (2) is then equivalent to

min
x

m∑
j=1

∑
i ,k

dijkxik

q

, s.t.
m∑

j=1
xij = 1, ∀i . (3)
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Now we transform and relax problem (1). First notice that y ∈ {0, 1}n is
uniquely determined by the index set S of 1s in it, so

∑
i dijyi =

∑
i∈S dij .

Our goal becomes finding S. Next, we introduce auxiliary indicator
variables {zjS}j≤m,S⊂[n] so that the original problem can be rewritten as

min
zjS

j∈[m],S⊂[n]

∑
j

∑
S⊂[n]

fj

∑
i∈S

dij

 zjS (4)

s.t. zjS ∈ {0, 1} ∀j ∈ [m], S ⊂ [n]
z1S = · · · = zmS = zS , ∀S ⊂ [n]∑
S⊂[n]

zS = 1

yi = 1 iff i ∈ S, ∀i
y ∈ P
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This is a hard problem and solution is extremely slow. However, if we relax
the constraint on zjS then it becomes a linear programming problem:

min
zjS

j∈[m],S⊂[n]

∑
j

∑
S⊂[n]

fj

∑
i∈S

dij

 zjS (5)

s.t. zjS ∈ [0, 1] ∀j ∈ [m], S ⊂ [n]∑
S⊂[n]

zjS = 1, ∀j

ỹi =
∑

S:i∈S
zjS , ∀i , j

ỹ ∈ P
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It can easily be verified that (5) is indeed a relaxation of (4) in that
Recompile

1 Their target functions are the same,
2 All feasible solutions {zjS , yi} of (5) are feasible to (4). More

specifically, the chain z1S = z2S = ... = zmS is broken so that they
can take different values, and boolean variables zjS now can
continuously take values from [0, 1], so that yi also become
continuous variables ỹi in [0, 1].
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Note that (5) is indeed a linear programming problem as we declared, and
it can be solved more quickly. Then one can randomly draw a boolean
vector y based on ỹ, for example using independent Bernoulli(ỹi)
distributions. However, one may ask: how well is such an approximation?
The answer is in the following theorem (a modified version of Theorem 1.5
in Makarychev and Sviridenko 2015), which uses decoupling inequalities,
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Theorem

Suppose dij > 0. Let (ỹ∗, z∗) be a feasible solution of the relaxed problem
(5). Assume each Yi is drawn independently from Bernoulli(ỹi). Then we
have

E

∑
j∈[k]

fj

∑
i∈[n]

dijYi

 ≤
∑
j∈[k]

A(fj)
∑

S⊆[n]
fj

∑
i∈S

dij

 z∗
jS , (6)

where A(f ) = supt>0 E [f (tP)/fj(t)] , with P a Poi(1) variable.
Particularly, since (5) is a relaxation for (1), if (ỹ∗, z∗) is a
(1 + ϵ)-approximately optimal solution to (5), then

E

∑
j∈[k]

fj

∑
i∈[n]

dijYi

 ≤ (1 + ϵ) max
j

(A(fj)) IP (7)

where IP is the optimal cost of the original problem (1). In other words,
(Y1, · · · , Yn) is a (1 + ϵ) maxj A(fj)- sub-optimal solution of the original
problem (1)
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In the load balancing problem, fj(x) = xq for some q > 1. Then

A(fj) = sup
t>0

E
[(tP)q

tq

]
= EPq

is the qth moment of Poisson(1). When q = 2, A(fj) = 1 so when ỹ∗ is a
(1 + ϵ)-suboptimal solution of (5), (Y1, · · · , Yn) is a (1 + ϵ)-suboptimal
solution of (1)!
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The key to proving (6) is to bound Efj(
∑

i dijYi), the expectation of a
convex function of an independent sum. One can see that decoupling
inequality plays an important role. In fact, the following decoupling
inequality was developed by the authors and used to prove the above (6)
(Theorem 5.3 in Makarychev and Sviridenko 2015), which is an extension
to de la Peña [2].
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Theorem
1 Let X1, ..., Xn be nonnegative random variables, and let Y1, ..., Yn be

a complete decoupling of X1, ..., Xn, i.e. Yi are independent and have
the same distribution as Xi . Let P ∼ Poisson(1), independent of Xi
and Yi ’s. Then for every convex function ϕ : R → R,

E
[
ϕ

( n∑
i=1

Yi

)]
≤ E

[
ϕ

(
P

n∑
i=1

Xi

)]
. (8)

2 For every nonnegative function ϕ s.t. E[ϕ(P)] < ∞ and every positive
ϵ, there exists n and random variables X1, ..., Xn, Y1, ..., Yn satisfying
the assumptions in Part 1 such that

E
[
ϕ

( n∑
i=1

Yi

)]
≥ (1 + ϵ)E

[
ϕ

(
P

n∑
i=1

Xi

)]
. (9)
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Topics Preview

1 Application I: Boolean optimization

2 Application II: Linear Stochastic Bandits

de la Peña Topic 8: Applications of Decoupling and Self-normalizationAI4OPT Atlanta 2024 15 / 26



In this section, we introduce another work by Abbasi-Yadkori, Pál and
Szepesvári (2011) [1] in linear stochasic bandits. A confidence band was
obtained by self normalization, and played a central role in the algorithm
and risk analysis.
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Here we introduce a paper by Abbasi et al (2011) [1]. The authors used
pseudo-maximization to construct confidence sets, which in turn resulted
in an algorithm with superior performance in terms of regret, compared to
other algorithms at that time. Consider the following problem: assume at
each round t, the player bets on d slot machines with money
Xt = (Xt1, ..., Xtd). The reward at time t is Yt = X⊤

t θ∗ + ηt where
θ∗ ∈ Rd is a vector of unknown parameters,
ηt is conditionally zero mean, i.e. E[ηt |Ft−1] = 0 where
Ft = σ(η1, · · · , ηt)
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For simplicity we assume Xt is Ft−1-measurable. The player’s goal is to
minimize

∑n
i=1 X⊤

t θ∗ by properly choosing {Xt} sequentially.
The authors consider an algorithm called Optimism in the Face of
Uncertainty (OFUL) algorithm: it maintains a confidence set Ct of the
unknown parameter θ∗. At round t, the learner

Chooses (Xt , θ̃t) := arg max
x∈Rd ,θ∈Ct−1

x⊤θ

Receives new reward Yt

Updates the confidence set Ct .
Naturally, the construction of a confidence set is crucial to the algorithm,
but it is difficult because the dependence structure of {Xt , Yt}t is difficult
to characterize. The following theorem provides a self-normalized
concentration obtained from pseudo-maximization, and the concentration
can be used to obtain a confidence ellipsoid Ct for θ∗.
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Theorem (Abbasi-Yadkori et al. (2011))
Let {ηt}∞

t=1 be a real-valued process, adapted to a filtration {Ft}∞
t=1, and

conditionally R-sub-Gaussian for some R ≥ 0, i.e.

∀λ ∈ R, E[eληt |Ft−1] ≤ exp
(

λ2R2

2

)

let {Xt}∞
t=1 be a Rd valued process such that Xt is Ft−1-measurable.

Assume V is a d × d positive definite matrix. For any t ≥ 0, define

V̄t = V +
t∑

s=1
XsX⊤

s , St =
t∑

s=1
ηsXs

Then ∀δ > 0, with probability at least 1 − δ, ∀t ≥ 0,

S⊤
t V̄ −1

t St ≤ 2R2 log
(
δ−1 det(V̄t)1/2 det(V )−1/2

)
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Proof
The proof uses the previous lemma for matrix-normalized processes,
combined with a stopping time argument. WLOG assume R = 1
(Othewise rescale ηt by ηt/R). Let τ be any stopping time. Denote
Vt :=

∑t
s=1 XsX⊤

s so that V̄t = V + Vt . We claim that (Sτ , Vτ ) satisfy
the canonical assumption, i.e.

Eeλ⊤Sτ − 1
2 λ⊤Vτ λ ≤ 1, ∀λ ∈ Rd

In fact, Mλ
t := eλ⊤St− 1

2 λ⊤Vtλ is a supermartingale (with additional
definition S0 = V0 = 0 so Mλ

0 = 1). To see this, notice that
Mλ

t =
∏

s≤t eλ⊤Xsηs− 1
2 λ⊤XsX⊤

s λ and the increment satisfies

E
[
eλ⊤Xtηt− 1

2 λ⊤XtX⊤
t λ
∣∣∣Ft−1

]
≤ e− 1

2 λ⊤XtX⊤
t λE

[
eλ⊤Xtηt

∣∣∣Ft−1
]

≤ e− 1
2 λ⊤XtX⊤

t λ+ 1
2 (λ⊤Xt)2

= 1
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Recalling Topic 6

Lemma (de la Peña, Klass & Lai, 2009 [4])

Let a random vector A and a symmetric, positive definite random matrix C
satisfy the following canonical assumption

E exp
(

θT A − 1
2θT Cθ

)
≤ 1, ∀θ ∈ Rd . (10)

Let V be a positive definite nonrandom matrix, then

E
[√

det(V )
det(C + V ) exp

(1
2AT (C + V )−1A

)]
≤ 1, (11)

E exp
(1

4AT (C + V )−1A
)

≤
√
E
√

det(I + V −1C). (12)
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Proof Cont’d

This implies that Mλ
t is a supermartingale so Mλ

τ is a.s. well defined.
Clearly it follows that EMλ

τ ≤ 1.
By Equation (11), we have

E
[√

det(V )
det(V̄τ )

e
1
2 S⊤

τ V̄ −1
t Sτ

]
≤ 1.

It follows that

P
(
S⊤

τ V̄ −1
τ Sτ > 2 log

(
δ−1 det(V̄τ )1/2 det(V )−1/2

))
= P

(
e

1
2 S⊤

τ V̄ −1
τ Sτ det(V̄τ )−1/2 det(V )1/2 > δ−1

)
≤ δE

[√
det(V )
det(V̄τ )

e
1
2 S⊤

τ V̄ −1
t Sτ

]
≤ δ
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Proof Cont’d

Finally, to prove the union bound over t, let τ be the first time that the
inequality fails, i.e.

τ := inf{t ≥ 0 : S⊤
t V̄ −1

t St > 2 log
(
δ−1 det(V̄t)1/2 det(V )−1/2

)
}

with the convention that inf ∅ = +∞. Then

P
(
∃t ≥ 0, S⊤

t V̄ −1
t St > 2 log

(
δ−1 det(V̄t)1/2 det(V )−1/2

))
= P(τ < ∞)

= P
(
S⊤

τ V̄ −1
τ Sτ > 2 log

(
δ−1 det(V̄τ )1/2 det(V )−1/2

)
, τ < ∞

)
≤ P

(
S⊤

τ V̄ −1
τ Sτ > 2 log

(
δ−1 det(V̄τ )1/2 det(V )−1/2

))
≤ δ.
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The theorem can be used to construct confidence sets in the following way:
let θ̂t = (X⊤X + λI)−1X⊤Y be the ridge estimator of θ∗ using current
information. ∀x ∈ Rd , define ∥x∥V := x⊤Vx for positive definite V :

Theorem
Let V = λI in the definition of V̄t . Suppose ∥θ∗∥≤ K. Then ∀δ > 0, with
probability at least 1 − δ, ∀t, θ∗ lies in the confidence set Ct{

θ ∈ Rd : ∥θ − θ̂t∥V̄t
≤ R

√
2 log

(
δ−1 det(V̄t)1/2 det(λI)−1/2

)
+ λ1/2K

}

The key is to connect St =
∑

ηsXs and ∥θ − θ̂t∥V̄t
.
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